
Proactive Data Containers (PDC) for
next generation HPC storage

Suren Byna
Computer Staff Scientist
Scientific Data Management Group
Lawrence Berkeley National Laboratory

PDC project

• A new DOE ASCR project to explore next generation
storage systems and interfaces

• Project team
§ Quincey Koziol, Houjun Tang, Bin Dong (LBNL)
§ Jerome Soumagne, Kimmy Mu (The HDF Group)
§ Venkat Vishwanath, François Tessier (Argonne National Lab)

Footer 2

HPC data management requirements
Use case Domain Sim/EOD/an

alysis
Data
size

I/O Requirements

FLASH High-energy
density physics

Simulation ~1PB Data transformations, scalable
I/O interfaces, correlation
among simulation and
experimental data

CMB /
Planck

Cosmology Simulation,
EOD/Analysis

10PB Automatic data movement
optimizations

DECam &
LSST

Cosmology EOD/Analysis ~10TB Easy interfaces, data
transformations

ACME Climate Simulation ~10PB Async I/O, derived variables,
automatic data movement

TECA Climate Analysis ~10PB Data organization and efficient
data movement

HipMer Genomics EOD/Analysis ~100TB Scalable I/O interfaces,
efficient and automatic data
movement

3

Easy interfaces and superior performance

Autonomous data management

Information capture and management

POSIX I/O: Main functionality
POSIX File System Object Store

chmod
open
read
lseek
write
close
stat

unlink

- 4 -
Slide from Glenn Lockwood

POSIX File System Object Store
chmod
open
read
lseek
write
close
stat

unlink

POSIX I/O: Metadata

- 5 -

All files have a common
set of metadata

(permissions, owner,
group, mtime, atime

ctime)

Slide from Glenn Lockwood

POSIX File System Object Store
chmod
open
read
lseek
write
close
stat

unlink

POSIX I/O: Stateful

- 6 -

I/O is stateful
(read/lseek/write operate
on file descriptors from

open/close)

Slide from Glenn Lockwood

POSIX File System Object Store
chmod
open
read
lseek
write
close
stat

unlink

POSIX I/O: Consistent

- 7 -

Reads and writes are
atomic and strongly

consistent:
After a write() to a regular file has successfully
returned:
• Any successful read() from each byte

position in the file that was modified by that
write shall return the data specified by the
write() for that position until such byte
positions are again modified.

• Any subsequent successful write() to the
same byte position in the file shall overwrite
that file data.

Slide from Glenn Lockwood

What is an object store? Metadata-less
POSIX File System Object Store

chmod
open
read
lseek
write
close
stat

unlink

- 8 -

No prescribed metadata

• object id (e.g., 0xbf5abcdb)
• object size (e.g.,

5,368,709,120)

Slide from Glenn Lockwood

What is an object store? Stateless
POSIX File System Object Store

chmod
open
read
lseek
write
close
stat

unlink

- 9 -

No state

Slide from Glenn Lockwood

What is an object store? Simple
POSIX File System Object Store

chmod
open
read GET
lseek
write PUT
close
stat

unlink DELETE

- 10 -
Slide from Glenn Lockwood

Examples of object storage systems

§ Object storage services
§ Amazon S3, Rackspace Cloud files, HP Cloud object

storage, IBM Cloud Object Storage, etc.
§ Object-based storage systems

§ Lustre, etc.
§ Ceph
§ DAOS
§ MarFS
§ OpenStack Swift
§ …

- 11 -

What is an object?

• Chunks of a file
• Files (images, videos, etc.)
• Array

• Key-value pairs
• File + Metadata

Footer 12

Current parallel file systems

Cloud services (S3, etc.)

HDF5, DAOS, etc.

OpenStack Swift,
MarFS, Ceph, etc.

Science Applications

High Level I/O Library (HDF5, PNetCDF,
ADIOS)

I/O Middleware (POSIX, MPI-IO)

Parallel File System (Lustre, GPFS,..)

I/O Hardware

Existing parallel I/O stack

• Storage hierarchy is
considered to get deeper

• Node local
• Out-of-memory
• Shared by nodes (BB)
• PFS cache
• PFS
• Archive

• Evolving parallel file system
• FastForward I/O stack
• Software for managing

different layers of
storage HW

• POSIX-based I/O
middleware

• Decades old tech
• IO

forwarding/dispatching
layers

• High-level I/O libraries
• Novel data models
• Support for in situ

analysis
• Extensive metadata

• Data driven science
• Large and complex

data
• In situ analysis
• Novel abstractions
• Workflows

- 13 -

Challenges and requirements

Applications

File system

SD

Parallel FS

SD

OSSMDSMDS
…

…

OSS…

Metadata services Object storage services

• Object-based parallel file
systems – Evolutionary
patched systems to sequential
file systems

• Performance tuning should not
be a scientist’s job

• Managing millions of
directories and files is not
scalable

• Lack of information capture
and management

• Integrated data management
across multiple storage layers
is absent

- 14 -

HPC data management requirements
Use case Domain Sim/EOD/a

nalysis
Data
size

I/O Requirements

FLASH High-energy
density physics

Simulation ~1PB Data transformations, scalable
I/O interfaces, correlation
among simulation and
experimental data

CMB /
Planck

Cosmology Simulation,
EOD/Analysis

10PB Automatic data movement
optimizations

DECam &
LSST

Cosmology EOD/Analysis ~10TB Easy interfaces, data
transformations

ACME Climate Simulation ~10PB Async I/O, derived variables,
automatic data movement

TECA Climate Simulation ~10PB Data organization and efficient
data movement

HipMer Genomics EOD/Analaysi
s

~100TB Scalable I/O interfaces,
efficient and automatic data
movement

15

Easy interfaces and superior performance

Autonomous data management

Information capture and management

Research toward object-centric storage systems

• Two objectives of “object-centric storage”
– Performance
– Productivity

• Autonomous data management
– Users and application developers should be free from managing byte

streams, files, and directory hierarchy
– Automatic and efficient data movement and use of memory hierarchy

in exascale systems

• Support for extracting information from data
– Automatic extraction and management of information
– Simulation time analytics
– Interaction among multiple datasets (e.g., simulation and

experimental/observation data)

16

PDC interpretation of an object

• Chunks of a file
• File
• Array

• Key-value pairs
• File + Metadata
• Data + Metadata + Provenance + Analysis operations

+ Information (data products)

Footer 17

Current parallel file systems

Cloud services (S3, etc.)

HDF5, DAOS, etc.

OpenStack Swift

Proactive Data Containers (PDC)

Proactive Data Containers

18

Container
<root>

A B C

D E F Dataset

KV-Store

Group

Container
Collection

Locus

Key

Container: X
<root>

A B C

D E F

Container: W
<root>

A B C

D E F

Container: Z
<root>

A B C

D E F

Container: Y
<root>

A B C

D E F

Container: X
<root>

A B C

D E F

Container: W
<root>

A B C

D E F

Container: Z
<root>

A B C

D E F

Collection: P

Collection: Q

Container
Collection

PDC Locus

Application Memory Locus NVRAM Locus

A
B

C
Datasets

Container

A
B

C
Datasets

Container

Many

Storage Locus

A
B

C
Datasets

Container

A
B

C
Datasets

Container

Countless

A
B

C
Datasets

Container

A few A
B

C
Datasets

Container

Mapping+Transformation

Mapping+Transformation

Proactive Data Containers

Legacy File

Legacy File

Adapter+Mapping+Transformation

Interface
– Programming and client-level

interfaces

Services
– Metadata management
– Autonomous data movement
– Analysis and transformation task

scheduler

PDC locus services
– Object mapping
– Local metadata management
– Locus task execution

19

PDC System – High-level Architecture

Interface
– Programming and client-level

interfaces

Services
– Metadata management
– Autonomous data movement
– Analysis and transformation task

scheduler

PDC locus services
– Object mapping
– Local metadata management
– Locus task execution

20

PDC System – High-level Architecture

Persistent Storage API

BB FS Lustre DAOS

…

• Create an object
– Pass object properties (metadata): name, lifetime, user info,

provenance, tags, dimensions, data type, transformations,
consistency, etc.

• Open object
- Memory allocation, etc.

• Create a region
• Map and unmap a region to object
• Close object

• Release object

PDC API – Object manipulation

21

- Objcet ID
- DataObjLocation
- SystemInfo
- ID Attributes

- Name
- AppName
- Owership
- TimeStep

- Create
- Delete
- Search
- Update

 OperationsUser-defined TagPre-defined Tag

- (UserTag1, Value1)
- (UserTag2, Value2)
- (UserTag3, Value3)
- ...

Metadata Object

• Create query with conditions
• Execute query
• Iterate_start

• Iterate_next
• Get_object_handle
• Get_object_info

PDC API – Object Access

22

SoMeta: Metadata management design

23

Metadata server design
– Distributed metadata

servers
– Uses a core on each

compute node
– Distributed hash table to

select metadata servers

Capabilities
– Create, update, and delete

metadata objects
– Metadata objects are

searchable
– Attach tags for extended

attributes and relationships

- Objcet ID
- DataObjLocation
- SystemInfo
- ID Attributes

- Name
- AppName
- Owership
- TimeStep

- Create
- Delete
- Search
- Update

 OperationsUser-defined TagPre-defined Tag

- (UserTag1, Value1)
- (UserTag2, Value2)
- (UserTag3, Value3)
- ...

Metadata Object

Scalable metadata management for object-centric storage

Impact

Approach

• Existing and future object-centric
storage systems are able to use
SoMeta for scalable metadata
management.

• SoMeta has up to 3.7X speedup
over Lustre in common metadata
operations with 4 servers, and
scales well with more server
processes.

• SoMeta scales well with the
number of metadata servers; w/
120 servers > 3 million object
creation operations per second

• Developed a scalable, fault tolerant, user-
level, distributed metadata management
system for object-centric storage systems

• Our system, SoMeta, provides tagging for
storing rich semantic information as well as
capabilities to search and retrieve interesting
metadata objects, based on keyword search.

Problem
• Existing metadata management on file

systems do not to grow or to shrink based
on the need client load

• The load of creating objects by hundreds of
thousands to millions of processes cannot
be handled by existing file systems

0

40

80

120

160

200

Create Delete Stat Find

Th
ro

ug
hp

ut

(T
ho

us
an

d
op

s/
s)

SoMeta Lustre

0
0.5

1
1.5

2
2.5

3
3.5

120 240 480 960 1920 3840

Th
ro

ug
hp

ut

(M
ill

io
n

op
s/

s)

Number of clients

Results

Throughput for SoMeta to create objects
with unique names.

A comparison of SoMeta and
Lustre, where both systems use
four metadata servers.

24

Challenges of deep storage hierarchy

– Inefficiency :
• Staging in/out data to/from burst buffers (BB)
compete for resources on BB servers

– Burden on users
• Users or applications have to explicitly make the
data movement decisions, which could lead to
inefficiency

– Limited to one level
• Staging in or out and transparent caching is
aware of a single level storage

25Data Elevator

Data Elevator for moving data transparently

26Data Elevator

Memory

Parallel file system

Archival storage (HPSS
tape)

Shared burst buffer

Node-local storage

Campaign storage

• Contributions
- Low-contention data movement library for hierarchical

storage systems
- Offload of data movement task to a few compute nodes

or cores
- Data Elevator on NERSC’s Cori Phase I

- With two science applications, we demonstrated that Data
Elevator is 1.2X to 4X faster than Cray DataWarp stage_out
and up to 4X faster than writing data to parallel file system

• Benefits of using Data Elevator
- Transparent data movement: Applications using HDF5

specify destination of data file and the Data Elevator
transparently moves data from a source to the destination

- Efficiency: Data Elevator reduces contention on BB
- In transit analysis: While data is in a faster storage

layer, analysis can be done in the data path

Data Elevator – high-level operation

27Data Elevator

Start Data Elevator along with an application

H5Fopen (..)
…

…
H5Dwrite (..)
…

H5Fclose (..)
…

MPI_Finalize ()

DE intercepts HDF5 calls at run time using VOL

Sets up staging area, and give file handle to app
Records the destination in a Berkeley DB table

Writes the data to staging area
Updates the status

Staging area ready for use
(analysis, transfer, etc.)
Application can continue with computation

Check staging area status
Move any remaining data

Data Elevator design

• Implementation challenges
– Transparently intercepting I/O calls
– Moving data between storage layers

efficiently w/ low contention

28Data Elevator

• Solutions
– IOCI – IO Call Interceptor library - VOL
– Transparent & Efficient Data Mover

processes – Concurrent MPI job

Buffer
Burst

Simulatioin processes

API

f.h5.temp

f.h5

Computing Node

DEMT
f.h5, f.h5.temp, ...

Append
Redirected I/O Async Data Movement

PFS

IOCI

TEDM processes

HDF5/Others API MPI−IO

Simulation processes

DM

Metadata for managing the state of
data

• Metadata Table to manage the data movement status
– Data written to BB
– Data is written to BB
– Request to analyze data and start analysis
– All data reads are done
– Data is being written to PFS
– Data is moved to PFS

29

restart moving file

W

B

D

A

M

F

if error happens

analysis

no analysis

ha
s a

na
ly

sis

repeated

Data Elevator

HPC data management requirements

30

Easy interfaces and superior performance

Autonomous data management

Information capture and management

